
~

~
-

~
-

~
-

~~~~~~~~~
-

~~~~~~~~~~~~
- - :: _ _

ALPHARD: A Symbol Table Example Page 17

generator indis(s:condis,i:integer) extends x:integer
requires O~i~m-1

~~ indis — s.sq1 where indis~<> ~
(indis — c”<x> ’d ~~ c, <x>, and d are disjoint);

~gi~ ~~~ x, <s,i>, SI) —

premise s.sq1—c~(x>~d A 1(c) (SI] I(c~<x>)
rule ~j~ j (P, x, <s,i>, f3, S1, ~~

Q) —

premise s.sq,=c’<x> ’.d A P A Vy C c(-fi(y)) A 5(x) {S
~
] Q,

premise P A Vy C s.sq1-’5(y) tS2} Q;
auxiliary predicates

follows(s:condis,i,j: integer) ‘df 3k st sq~ — < . . ., I,.. ., j, ... >,

mbr(s:condis,i,j:integer) ‘df sq1 — < . . ., j , . . .

representation
unique

sq: vector(integer,O,m- 1),
It: vector(integer,1,n),
free: integer
iriit begin free 4- 1; !.QL i:upto(1,n-1) do lt[i] 4- iii; lt(n] ~ 0;

f~~~~
i:upto(0,m-1) ~~ sq[i] 4- 0 ~flç~j —

~~~(sq,lt ,free) — (SQ1 I O�i�m-1} where
if sq ( i ]—O t hen SQ1 =<> e(se
if sq[i] — Pi A (Vj ~ [1..k-l] lt[p

~
] p

~+i ) A It[pk]1uO th~~fl SQ1 — 
~~~~~~invariant

-1 0~~fr ee �n
A Vj ((0..m-1]0~~sq[j]�n
A VK C [i ..n]O �lt[lc] �n

-
- - n (free , sq(j], lt[k]} = (m+1 0’s, 1, 2, ..., n) ! this term Is a multiset equality

A Vi C [i..n](succ(free,i) zor 3!j(succ(sq(j] ,i)))
where succ(i,j)

~df ~~~ v (i,’0 co.nd succ(lt(i],j));

implementation
body xtnd ~i s.free#0 A i ((0..m-1J

-‘ out (succ(s.free ’,j) A succ(s.sq(i],j) A s.sq[i]—j A s.lt(j] — s.sq’[i]) —

begin
j ~— s.free; s.f ree 4- s.lt(j]
s.lt(j] 4- s.sq(i~ s.sq(i] 4-

I
- ~.- - - -- - — ~~~~~~~~~~ - --

~~~~~~~~~~~~~~~ ,A S..JZ - - - . -  - -  — -- - ——-—- --- - . -



-__

Page 18 Implementation of the f.~~~~~~~ 
Condis

body del in succ(s.sq(i],j) A i C (0..m-1] A j [0..n] g
~
j  (s.sq[i]—j ) —

if s.sq(i],’j then
begin k:integer;
k s.sq[i];
while s.lt[lc] ,

~ 
j do k ~- s.lt[lc];

s.lt[tc) 4- s.free; s.free 4- s.sq[i] s.sq[i] 4-

end~-

body delall in 1 ( (0..m-1] ~~ (s.sq[i]=0) =
s.del(s,i,O) ! a call to the concrete body del, not the abstract function del

body full out (t — (s.free—Q)) —

t 4- s.free=0;

formbody indis —
beginform
representation

~~~(s.sq,s.lt,i,x) —

if x = 0 then c~d where c = s.sq~ and d — <> ~~~ cA~<x> d
where c = <p1,..., Pr_ i >, X 0 r, d <Pr+1, . . ., Pk>,

= s.sq[ij, S.lt[pk] — 0 , and (Yj E (l..k-I] s.lt(p~] —

invariant true;
implementation

~QQ~
&irrit Q.!Lt (x=s.sq[i) A (&b s.sq[i],’O)) —

(x ~- s.sq[i] &b 4-

~~~~ &next j~ succ(s.sq(i],x) A x,’0 out (x—s.lt[x’) A (&b ‘ s.lt(x’),’O)) —
(x ~ s.lt[x]; &b 4- x,’0);

endform

endfprm

The implementation of the four operations in condis should be fairly obvious. xtn.d
merely removes an entry from the free list and places it at the head of the appropriate list;
note that this entry is returned (in j) as the value of function xtnd. dat is a bit more
interesting. It searches the appropriate list for the entry in It which points to the first entry,
j, which is not to be removed. It then moves the entire initial portion of the list to the free
space list by simply setting the proper pointers. If all the entries are to be removed, detail
does this; it calls del to search for the list-ending zero and to move the entire list to the free
space list. fulL just tests if the free space list is empty.

— — ~~~~~
—

~~~~- 
~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~



_ _  

~~~~~~~~~~~~~~~~~~~~~~~~~ 1

ALPHARO: A Symbol Table Example Page 19

The predicate suoc defined in the concrete invariant is closely related to the abstract
predicate follows. Although the parameterizations of the two predicates are different, they
ask the “same” question and are related by

foIlows(rep(sq,~t,free), i, j) — succ(i, j)

The form indis(s,i) defines a generator for elements of the integer sequence s1, starting
with first(s

~
). Abstractly, an indis is composed of three (sub)sequences, the first containing the

elements already generated, the second the (singleton) current element, and the third the
other elements yet to be seen.

In [Shaw76b] we discussed the proof rules for iteration statements. We showed that
certain simplifying assumptions about the generator can yield simple proof rules; these
assumptions are satisfied by indis, as we will show in the verification of condis. We therefore
have a proof rule for the f~~~

statement which corresponds closely to Hoare’s sequence rule
and also a proof rule for the ~j~~t statement. These proof rules are given in the specifications
of indis, and indeed constitute the major part of those specifications. The basis for this
specification technique for generators is given in [Shaw76b].

Verification of Condis

We can now verify the
~~~~~~ 

condis.

For the fornt

1. Representation validity
Show: t~(sq,lt,free) ~ I~(rep(sq,lt ,free))
Proof: I

~e~k~n holds by the bounds on sq[jJ and 11(k) and the fact that the
rep function drops the zeroes that indicate the end of a list. The
are distinct because the multiset (sq(JJ, lt(k]} contains each of 1, 2, ...,
ii at most once. The multiset property of I~ implies succ(free,0) and
succ(sq[j],0).

2. Initialization
Show: n~1 A m~l (~~ t ) Vi C [0..m-1J sq1—<> A
Proof: After in~f we have free —i , lt(1)—2, ..., lttn- 11=n, lt(nl—O, sq[O)—O,

sq(m-1)—O. Using the rep function, each sq1—<> since each sq(i)—O.
n~1 means 0�free~n. The bounds on sqlj ] and 11(k) and the multiset
property are clear. Vi ( (1..n)(succ(free,i) A —succ(O,i)).

__________- — 

~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _

- -  
_ - ---,



P.g. 20 Verification of Condis

For 11w 1unct~o,~ ~tn4

3. Con rete operat ion
Sho* - - l r,eøO A ‘ [0. m-1 )A  1~ ( body ) 5out A
P,~ o~- The lou ’ terms of 5out are clear as are the bounds in I~. The

“~u~t s - e t  property holds because the body permutes the values s.free’,
s sq [ i~ arid s lt’[s.free ’J. Since the head of s.free moves to the head of
s.sq(i], each i [I n) still satisfies exactly one succ term. 5in (and 

~~ensures that the accesses to sIt and s.sq are within bounds.
Aa 5in holds

Show: I A 5pre $in
Proof : t tO m-U is immediate. If s.free—O, then the multiset property of

1~ means , using the rep function, that the SIGMA term is exactly n, a
contradiction. Hence s.freeøO.

4b. 5post holds
Show: I~ A 5out A 5pre D ~~~~~~~~Proof: Since s.sq [i]—j and s.ltljj ’..s.sq’[i], the ~ p function gives sq1—<j> ”sq1’.

For the function deL

3. Concrete operation
Show: A IC { body ) s.sq[i]=j n
Proof: If s.sq~ij=j then 5out holds and IC is unchanged. If s.sq(i],’j then

define the set G~ = { x I succ(s.sq[iJ,x) A succ(x ,p)}. Add the ghost
operation “H~H u {k}” after ~k~-s.lt[Ic]” in the ~~j~e loop and add
“H4-{lc)” after “k~s.sq[i]”. A while-loop invariant (placed before the
test) is then H=C~ because Gs.sq[i] {s .sq(i]} and

H=Gk A s.lt(k],’j ~ H U (s.It[lcfl = Gslt[k ]

The while terminates because succ(s.sq[i~j) and s.sq[iJ,’j. At
termination s.lt[k)=j and H=Gk. The multiset proper ty of IC holds
because the last three statements in the body permute the values
s.free’, s.sq’(i], and s.lt’[lc]. Furthermore , each element in H is now a
successor of s.free rather than of s.sq[i). All other successors of
s.sq(i] and all previous successors of s,free remain so, respec tively.
5out and the bounds in 1~ are clear.

4a. 
~~ 

holds
Show: I

~ 
A 5pre D 5in

Proof: Immediate from 5pre and a for condis.
4b. 5post holds

Show: A 5pre A 5out ~ sq1—< ~~~~Proof: Only sq~ changes. sq1 now begins with j and there are no other
changes to sq1.

L -— — — ——--
~~ 

-
~~~~~~ — -— - -~~--—


“‘fl. ~~~~~~~~~~~~ —.-—--
— k— ~.•-~-- ___________________—.-- .

ALPHARD: A Symbol Table Example Page 21

For the function detail

3. Concrete operation
Show: n 1~ (s.del(s,i,0) } s.sq[i]=O A
Proof: 5~~

and the multiset property of IC imply in holds for s.del.
~~holds for s.del as required.) The ~~ for s.del gives s.sq[i]=0. IC

after s.del gives 1~ after delall.
4a.

‘
gin holds

Show: i E [0..m-1) ~ i C [0..m-1)
Proof: Immediate

4b. 5post holds
Show: A i (- (O..m-1) A s.sq[i] 0 ~ sq,=<>
Proof: Only sq1 changes. s.sq[i]—O means sq1=<>.

For the function fuLl

3. Concrete operation
Show: I~ (t + -s.free=0 } t = (s.free=0) A
Proof: Immediate

4a. $~~
holds

~ in j
~ true

4b. ‘~post holds
Show: A f?out D f?post
Proof: t = (s.free=0) = (SIGMA... = n) using the multiset property of I~.

To verify the indis generator , we must first reconstruct the ore and
~~

j conditions
-
. - from the specified proof rules:

&init
~~~ (&b s.sq~~<>) n (&b ~ x — f irst(s.sq,) A c — <>)

&next
p~~ mbr(s,i,x)

P2.~i 
(&b d’,’<>) A (&b ~ x = f irst(d’) A c — c’~<x ’>)

Next , we must show that indis satisfies the standar d aggregate assw’nptions:

(a) The indis abstraction is exp licated in ter ms of sequences . The normal empty
sequence (<>), concatenation operator ( v), and leading element selector
(firs t) are available.

(b) The complete sequence to be generated is s.sq1, which can be decomposed as
indicated in the ~ j  clause of indis.

~~~~~~~~~~~~~



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Page 22 Verification of Condis

(c) The specifications of &init and &next have the required form.

Furthermore , indis satisfies the basic get~erator a~ssampuons because (a) &init and &next
terminate and (b) &init and &next alter only the incu s variable x (and the return value &b).

Since “sq”, “it”, and “free ” are unchanged by indis, the IC of condis stilt holds and will be
used in the proof.

For the 
~~~~~~ 

(sndi.s)

1. Representation validity
Show: 1c ~

1a’ i.e., true ~ true
Proof: Immediate

2. Initialization
Show: 0�i�m-1 {) true A true
Proof: Immediate

For the function &out

3. Concrete operation
Show: true (x ~ s.sq[i) &b~x~0 } x=s.sq[i) n (&b a s.sq(i],’0)
Proof: Clear

4a. ,
~~~~ 

holds
is true

4b. ‘Sost holds
Show: x—s.sq(i] A (&b a s.sq[i],’O) ~

(&b s.sq~’<>) A (&b ~ x — first (s.sq~) n c —

Proof: From the rep function for indis, s.sq1 = (if s.sq[iJ—0 ~~~ 
<>

some non-empty sequence). Hence &b a s.sq[i],&0 a s.sq~’<>. For the
second term of the conclusion, assume &b. Then x=s.sq(i),’0 and the
fina l clause of reo gives s.sq, = c~<x> vd. Since x—s.sq(i]—p1, then c —

<> whence also x — f irst(s.sq1).

For the function &next

3. Concrete operation
Similar to &init.3

4a. 5~~ 
holds

Show: mhr(s,i,x) ~ succ(s.sq[i],x) A xp’0
Proof: mbr(s ,i,x) means xp’0 by ‘a for condis. The term succ(s.sq(i~x)

follows from rnbr(s ,i,x), the rep function, and the definition of succ.
4b. 5post holds

Show: mbr(s ,i,x ’) n x—s .lt(x ’) A (&b a s.lt[x ’]#O) ~
(&b ‘ d’,’<>) A (&b ~ x — first(d’) A c —

-, — - —--- 
.__ -—-- — - 

- -
_______



- ~~~~~~~~~~~~~~~~~~~ 
-

LtU UN UIfl~~~~ w -  flt ._.__

ALPHARO: A Symbol Table Example Page 23

Proof: mbr(s ,i,x ’) means x ’øO and s.sq,~<>, and therefore by the rep
function also s.sqj iJ,’O. Hence in the final clause of the reo function,
&b ~ sit[x’]p’O a d’#<>. For the second term of the conclusion, assu me

- &b. Then x=s.lt[x ’J~’0 and the final clause of reo gives s.sq1—c ’~’<x>’.’d
and, because x’,’O, als o s.sq1=c’.~<x’>’~.<d’>. Since x—s.lt[x ’j , it follows
that x — first (d’) and c —

QED

Examples of the Use of Symtab

In this section we shall present a skeletal example which involves three different sty les
of usage of the symtab abstraction. It is not our intent either to make this exampl~’ complete
or to suggest that the utility of the abstrac tion is limited to these three cases. Rather , we
wish to bolster the reader ’s intuition about ways in which the abstraction might be used.

The example we have chosen is a multi-pass compiler for an Algol- like (i.e., block-
s tructured) language , and indeed we have restricted ourselves to the first two passes - -

lexical and syntact ic analysis , respec tively. In this scheme , the first pass is responsible for
reading units of the source file (identifiers , literals , punctuation marks , etc.) and converting
them to an internal form cal led a “fexeme ”. These lexemes are writ ten onto a file which will
be read again by the second pass. The second pass is responsible for reading the file of
lexemes genera ted by the first pass and performing syntactic anal ysis. Although it is not
important to our example , the output of the second pass will likely be some other intermediate
representation (e.g., reverse polish or trees ) which is suitable for optimization and code

— generation.

Here, then, is t he skeletal program; more detailed comments on the uses of the symtab
abs tract ion , ar~ct on the program in general , follow the example.

func tion compiler (source: fi le(char)) =
begin

f orm condis . . . ;
~~~~~~~~~ symtab . ..;
form id extends string —

beginform
specifica tions

func tion hash (s:id, m:integer) re turns k:integer p.~~
m>0 p

~~
j 0�k<m’;

endform~

-

- ~~~~
—

~~~
-- -

~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _


—~~~~~-
‘ —

~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Page 24 Examples of the Use of Symtab

form lex extends integer—
beginform
specifications

function hash (x:Iex , m:initeger) returns k:integer p.~~ m~0 p~~j 0�k<m’;

endform ;

local L: f ileOex);

begin ! pass 1

~~~~ NT: symtab (Id, 127, 1000);

pure lexical pass , see discussion below.

~~~

begin ! pass 2
1QU~. at tributes = . . . see discussion below
local A: vector (attributes , 1, 2000);

~~~ SI: symta b (lex , 127 , 2000);

syntactic (parse) analysis pass; see discussion below.

en&:

~~~

This program first defines four forms. Symtab and condis have been defined in detail
previousl y and hence are not repeated. The forms id and tex are extensions of strings and
integers , respec tively, and merely add hashing func tions; we have not defined the
implementations of these functions , since they are not germane to the examp le. Note t oo that
a fi le of texes is defined at the outermost block level; this file is the explicit interface between
the first and second passes.

As noted earlier , the function of the first pass is to convert the external representation
of the program (a file of characters) into a more convenient internal form -— namel y a file of
lexenies (where each lexeme represen ts an atom of the language). Since this pass does no
syntactic analysis , in particular it does not recognize block structure. This implies that all 

- 

-

occurrences of the same atom (e.g., “xyz ”) will he mapped to the same lexeme. This mapping
is accomplished through the use of the NT (for name-table) instantiation of syr~’tab; indeed, the
only use of NT is to obtain this unique mapping and the instantiation is therefore deleted on
exi t from the block in which the first pass is accomplished. 



- - --

ALPHARO: A Symbol Table Example Page 25

In skeletal form, the body of the block for pass 1 might look somewhat as follows:

open(source); open(L);
while -end of fi le(source) do
be&in

loca l i:id, x:lex;

do w hatever is appropriate to assemble the next atom
from the source file into “ i .

if (x~—lookup(NT,i))=O A ‘full(NT) then x —insert (NT,i);
write (L,x);

endS.
rewin d(L);

Note that the operations enterblcck and leo..,.iebtock are not used, all insert opera tions
are done at the same block level, and only one entry per atom will be made.

The second pass is substantially more complex since it performs the full syntactic
anal ysis; hence we will not even attempt to illustrate its skeletal form. We would, however ,
like to point out several things about it.

First , notice that this block defines a form named attrthu.tes. We have not shown the
body of this 

~~~~ 
since it will be highly language- and machine-specific. However , the notion

is that this form provides for the storage and manipulation of whatever informat ion must be
retained about a symbol , e.g., its type, run-time s torage address , array bounds, and so f orth.

Second, we have declared a vec tor , A, of these attribute objects. As suggested in an
e?rlier section , instances declared at a given block level will be associated with a unique
integer , but this integer wil l be different from the one associated with the same identifier
declared at a differen t block level. These integers will , in turn, be used as indices into the
vector A (e.g., to set and retrieve information about the identifier).

Finall y, we have declared another instantiation of symtab, ST. This one wdl be used to
recognize block structure , and, specifical ly, w ill map from the simple lexemes generated in the
firs t pass into indices into the vector , A, of attributes. As the parser detects blocks (begin-
end pairs) in the source program, it will invoke enterblock and iecweblock. The declaration
processing routines will invoke defined to determine whether an identifier has been declared
twice at the same block level (presumabl y an err or), and perf orm insert operations to define
the instances of the identifier at the current block level. The rest of the compiler will perform
lookap operations to obtain the index of the attribute vector entry associated with specific
lexenies. (Note, by the way, that by appropriate ordering of insert and lookap operations the
declaration processor can obtain either of the interpretations of “block-structure ” discussed in
the introduction.)

— —~a- - S ~~~~~~~~~~~~

- - --— - - -- - ----— -—--- .~~-—- - —~~~~~-
- --

Page 26 Examples of the Use of Syn-itab

Before leaving this examp le, let us return to the form attributes (defined in pass 2) to
illustrate another potential use of the symtab abstraction. As was mentioned in the
introduction, in general the mapping from identifier to unique integer may be context-
sensitive. Block structure is the most familiar form of such sensitivity , but another is name
qualificat ion, as in field selec tors for records. In many languages one makes a declaration such
as

x:r ecord(name:string, age:integer , z:integer);

and then refers to “x.name ”, “x.age ”, and “x.z ”. A problem arises when, at the same bloc k
level, there is another declaration such as

y:rec ord(ss:integer , z:boolean);

In such a case the identifier “z ’ is no longer unique -- its interpretation depends upon the
name it qualifies.

There are many ways one might treat this , including inserting each of “x ”, ~x na’ne”,
“x.age ”, “x.z ”, “y”, “y.ss ”, and “yz ” as complete identifiers in ST. An attractive alter ’ iative ,
however , is to include instantiations of symtab in each of the attributes; that is , to make

~2Lr~attributes appear somewhat as follows:

f orm attributes —
beginf orm

represen tation

unique qual:symtab(lex ,1,10),

endf orm~

If this is done, then to determine the interpretation of “x.z ” one would firs t search ST
for t he index , i, ass ociated with the lexeme for “x ”, then search A(i).qual for the index
ass ociated with the lexeme for “z ”.

Although this compiler example has been sketchy, we hope that it has suggested some
of the ways in which the symtab abstraction may be applied. The details of the example are
not important , excep t insofar as they help the reader ’s intuition; what it important is the
notion that well—chosen abstra ctions have many uses. The class of broadly useful abstractions
is simply too large to include them all in a single programming language -- hence Alphard has
chosen to provide a linguistic facility so that the programmer may define them. Many such
(verifie d) abstractions will find their way into the library, and hence incrementally enhance the
“power ” available to the programmer -- without , at the same time, limiting him to the language

1

ALPHARO: A Symbol Table Example Page 27

designer’s preconceived notions of what constitutes an appropriate sot of abstractions (or, for
— that matter, implementations).

Conclusions

A programming language is a tool for the construction and communication of programs;
ab such its utility should be measured relative to these tasks. In other words, the language
should be used, and the quality of that use must be judged. While this is true of any
programming language, it is especially so of one such as Alphard, which departs substantially
from those in common use.

Thus, in this and other reports we are attempting to exhibit Alphard in relatively
realistic contexts and, along with the reader, to judge the practical utility of our creation. It is
far too soon to draw definitive conclusions -- that must await the use of Atphard in real
programs -- but we would like to share some of our impressions resulting from these
experiences.

First , the symtab abstraction is about the (conceptual) size we envision for most
abstractions; larger programs will be constructed by further “layering”. Thus we take our
ability to specif y and verify this

~~rrn as fairly strong evidence that larger programs will also
be tractable.

Second, in most respects the implementation is a practical , efficient one. This reinforces
our intuitions that no efficiency need be sacrificed to obtain clear , verifiable programs. (The
one exception to this statement is our use of fixed-sized vectors and, correspondingly,
integers for the unique identification of symbols. A more realistic implementation would,
perhaps, have done true dynamic storage allocation and used references. We avoided this
implementation primarily because it would have carried us into portions of Alphard not
covered in previous reports , but also because those portions of the language are still in flux,
We trust that the reader will forgive this departure from realism.)

Third , one of the anticipated advantages of an Aiphard-like language is that a library of
verified abstractions will develop. Both of the forms developed here might well go into that
library so we are getting some evidence that this hoped-for advantage will be realized.

Fourth, one of our private objectives was to make the form mechanism strong enough to
support an extremely broad class of abstractions -- the ultimate target being the spec trum
covered by our intuitive notion of the word “abstrac tion”. The evidence is not conclusive , but
we are feeling better about meeting that goal all the time.

Finally, we should say a few words about our experience concerning the effort needed

-

~~~
_... -~~~--~- ‘ —  —- .- --- - - --- 

-~~--- -—-.--.-- - — ------—- -— — .—~~~
. - .  - —- —--~~~~~~- - -  —~---- -‘ - - -- -- - — -- 



_~_-_ - ---__—--—.—-, —,_- —,— —.--.

Page 28 Conclusions

to define a form. It should be clear that the actual code in a ~~~ body, i.e., the
implementation part , is roughly the same size as the corresponding code in other languages
(although the t!~~ statement does seem to shorten many of the examples). Moreover, for
some reason, the information needed for verification (abstract and concrete invariants.
abstract ~~~ and ~~ j  conditions, rep function, etc.) usually seems about equal to the code
size; thus a full form is about twice the size of the code alone. This does not particularly
concern us, since these kinds of specifications tend to replace much of the documentation that
would otherwise be needed -- and they are certainly more precise.

We find the verification of a 
~~~~~~~~~ 

once the specifications and code have been written,
to be more difficult and time-consuming than coding, but not unreasonably so (say by as much
as a factor of two or three). Sometimes it is necessary to modify the specifications , or the
code, during the verification in order to remove inconsistencies that are uncovered. The
verifica tion may also suggest different specifications , usually ones that are more constrained
but sometimes simpler ones. In spite of the difficulties, the bodies of functions tend to be
small and their proofs correspondingly small, as can be seen fr om these examples. Moreover ,
the proofs of the two forms syrntab and condis were independent. To date our proofs have
been manually generated, but we envision having automated, interactive aids in the future.
These should reduce the verification time to approximately the coding time. Since this is less
than the time currently spent on debugging, we feel highly encouraged.

The majority of our time goes into designing and spec;fying the abstraction. There are
two related aspects of this: getting the intuitive abstraction “right”, and formalizing it (at least
sufficientl y f or it to be verified). The two appear related in that difficulty in f ormalizing an
intuitive abstraction often seems to uncover muddy thinking at the intuitive level. While we
seem to be improving our ability to formalize , indicating that it is a learnable skill , we have no
easy rules for picking the right abstraction in the first place. While, with practice , our abilities
in choosing abstractions may also improve, we suspec t that this is a fundamental problem of
design and has a significant aesthe tic component.

It is clear that we are just learning to use the power of the tools we are creating and
exploring. Much remains to be discovered about what is possible or impossible, easy or hard,
and reasonable or unreasonable to do with the facilities . In this connection we note that an
early version of symtab was a one -level ~~~~~~ used no generator such as indis, and had only
some of the same verificati on information. Although that version of symtab used the same
implementation ideas, it was essentially incomprehensible. When we realized that multiple
ideas were becoming confused, we separated the maintenance of the lists from the lookup
algorithms. The result was that the code, the specifications , and the verification all became
muc h more manageable.

i4.cknowted gern ents

We owe a great deal to our colleagues at CMU and IS!, especially Mario Barbacci , Neil

— —a
- ‘

~~~~~ —-~~~ ,..as~



- 
--
~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -

ALPHAR D~ A Symbol Table Example Page 29

Goldman, Donald Good, John Gutlag, Paul Hilfinger , David Jefferson , Anita Jones, David Lamb,
David Musser, Karla Perdue, Kamesh Ramakrishna, and David Wile. We would also like to thank
James Horning and Barbara Liskov and their groups at the University of Toronto and
Massachusetts Institute of Technology, respectively, for their critical reviews of Aiphard.

References

[Gries7 1) David Gries, Cons piier Construction for Digital Computers , Wiley, 197 1.

[Guttag76] John Guttag, “Abstract Data Types and the Development of Data Structures ”,
Sap plenze,it to the Proceedings of the SIGPLAN/SJCMOD Conference on Data;
Abstraction, Definition, and Structure, March 1976 (pp. 37-46). Also Com’nuni.co.ti.on.s of
the ACM (to appear).

(Halmos60] Paul R. Halmos, No..we Set Theory, Van Nostrand, 1960.

[Hoare72] C. A. P. Hoarn, “Proof of ~orrnctness of Data Representations ”, Acta Inforniatico., 1,
4, 1972 (pp. 271-281).

[Knuth73) Donald E. Knuth, The Art of Computer Pro gramnung, Volu me 3, Sorting and
Searching, Addison-Wcs ley, 1973.

[Shaw76a) Mary Shaw , “Abstraction and Verification in Aiphard: Design and Verificat ion of a
Tree Handler”, Proc. Fifth Toxo..s Conference on Computing Systems , 1976 (pp. 86-94).

[Shaw76b) Mary Shaw , Win, A. Wuif , and Ralph 1. Lond on, “Abstraction and Verificat ion in
Aiphard: Iteration and Generators ”, Carnegie-Mellon University and USC Infornu-ition
Scie,wes Institute Technical Reports , 1976. Also Cosnrnunico..ti.ons of the /4CM (to
appear).

[Wegbreit76] Ben Wegbreit and Jay M. Spitzen, “Proving Properties of Complex Data
Structures ”, Journ.at of the ACM, 23, 2, April 1976 (pp. 389-396).

(Wuif76 a) Win. A. Wuif , Ralph 1. t.ondon, and Mary Shaw , “Abstract ión and Verif ication in
Alphard: Introduction to Language and Methodology”, Carnegie-Mellon University and
USC Informotion Sciences Institute Tochnico.1 Reports , 1976.

[WuIf76h) Win. A. Wu if , Ralph 1. London, and Mary Shaw, “An Introduction to the Construction
and Verification of Aiphard Programs”, IEEE Transactions on Software Engineering, SE-
2, 4, December 1976 (pp. 253-265).

— -

Page 30

Appendix A
Informal Description of Verification Methodology

Alphard’s verification methodology is designed to determine whether a t.Q!~~
will ac tually

behave as promised by its abstract specifica tions. The methodology depends on explicitl y
separating the descri ption of how an object behaves from the code that manipulates the
representation in order to achieve that behavior. It is derived from Hoare’s technique for
showing correctness of data representations[Hoare72].

The abstract object and its behavior are described in terms of some mathematical
entities natural to the problem domain. Graphs are used in (Shaw76a) to describe binary
trees; sequences are used in [Wulf76a ,bJ to describe queues and stacks and in condis to

t describe list processing, and so on. We appeal to these abstract types

- in the invariant, which explains that an instar 4ia tion of the 1Q!~~ may be viewed
t as an object of the abstract type that meets certain restrictions,

— in the initially clause, where a particular abstract object is displayed, and

- in the p
~~

and 2Q~
conditions for each function, which describe the effect the

function has on an abstract object which satisfies the invariant.

The form contains a parallel set of descriptions of the concrete object and how it
behaves . In many cases this makes the effect of a function much easier to specif y and verify
than would the abstract description alone.

Now, although it is useful to distinguish between the behavior we want and the data
s tructures we operate on, we also need to show a relationship that holds between the two.
This is achieved with the representation function ~ p~(x), which gives a mapping from the
concrete representation to the abstract description. The purpose of a form verification is to
ensure that the two invariants and the ~çp(x) relation between them are preserved.

In order to verify a form we must therefore prove four things. Two relate to the
representation itself and two must be shown for each function. Informally, the four required
steps are 6:

6 We will use 1a~~
P
~~

to denote the abstract invariant of an object whose concrete
representation is x , I

~
(x) to denote the corresponding concrete invariant, italics to refer to

code segments , and the names of specification clauses and assertions to refer to those
formulas. In step 4b, “~~~(r ep (x ’))” refers to the value of x before execution of the function.
A complete development of the [~~~~~

verification methodology appears In (Wu lf76a,b].

-
~~~~~~~~~~ 

~

— - ---
--~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ 

-



F—- ~~~~~~~~~~~~~~~~~~~~ 
-- ---- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ TT:~~~~~~~~~
’T

~~ ~~~~~~~~~~~

AIPHARD: A Symbol Table Example Page 31

For the ~~~
1. Representation validity

2. Initialization
reQuires { m i t cl.o.use } initiallv(rep(x)) A I~(x)

For each func tion

3. Concrete operation
in(x) A I

~
(x) (function body } ~~~x) A

4. Relation between abstract and concrete
4a. I

~
(x) A ~~ .(rep(x))

4b. I
~

(x) A pre(rep(x ’)) A out(x) p~~ (rep(x))

Step I shows that any legal state of the concrete representation has a corresponding abstract
object (the converse is deducible from the other steps). Step 2 shows that the initial state
created by the representation section is legal. Step 3 is the standard verification formula for
the concrete operation as a simple program; note that it enforces the preservation of 1c~

Step
4 guarantees (a) that the concrete operation is applicable whenever the abstract pre condition
holds and (b) that if the operation is performed, the result corresponds properl y to the
abstract specifications.

~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ - —- - - --~~~- - — -  ~~~~~~~~~~~~~~~~~~ ~~~~~~~_:__~~~ -- --~~


